27,303 research outputs found

    Induced top Yukawa coupling and suppressed Higgs mass parameters

    Get PDF
    In the scenarios with heavy top squarks, mass parameters of the Higgs field must be fine-tuned due to a large logarithmic correction to the soft scalar mass. We consider a new possibility that the top Yukawa coupling is small above TeV scale. The large top mass is induced from strong Yukawa interaction of the Higgs with another gauge sector, in which supersymmetry breaking parameters are given to be small. Then it is found that the logarithmic correction to the Higgs soft scalar mass is suppressed in spite of the strong coupling and the fine-tuning is ameliorated. We propose an explicit model coupled to a superconformal gauge theory which realizes the above situation.Comment: RevTeX4 style, 10 pages, 3 figure

    Electronic structure of Ca1x_{1-x}Srx_xVO3_3: a tale of two energy-scales

    Get PDF
    We investigate the electronic structure of Ca1x_{1-x}Srx_xVO3_3 using photoemission spectroscopy. Core level spectra establish an electronic phase separation at the surface, leading to distinctly different surface electronic structure compared to the bulk. Analysis of the photoemission spectra of this system allowed us to separate the surface and bulk contributions. These results help us to understand properties related to two vastly differing energy-scales, namely the low energy-scale of thermal excitations (~kBTk_{B}T) and the high-energy scale related to Coulomb and other electronic interactions.Comment: 4 pages and 3 figures. Europhysics Letters (appearing

    Preparations of methoxynitrophenazines and their photoconductivities

    Get PDF
    Eight methoxynitrophenazines with a methoxy group at the 1 or 2 position and a nitro group at the 6-, 7-, 8- or 9-position of the phenazine ring 1,6, 1,7. 1,8, 1,9, 2,6, 2,7, 2,8 and 2,9 were prepared and their photocurrents were measured by illuminating the surface-type cell with white light from a W lamp under a N atmosphere at room temp. The photocurrents of 1-nitrophenazine 6 and 2-nitrophenazine 7 are compared with those of the methoxynitrophenazines. The photocurrent (i sub p) increases with increasing light intensity (I), thus satisfying log i varies as n log I. The n values are 0.5-1.0. When the nitro group is located at the beta-position of the phenazine ring, the photocurrent becomes larger owing to the electron withdrawing property of the nitro group. On the other hand, the photocurrents of phenazines with the nitro group at the Alpha-position are extremely small. The photoconductivities of methoxynitrophenazines are lower in air

    Quantum secret sharing based on modulated high-dimensional time-bin entanglement

    Get PDF
    We propose a new scheme for quantum secret sharing (QSS) that uses a modulated high-dimensional time-bin entanglement. By modulating the relative phase randomly by {0,pi}, a sender with the entanglement source can randomly change the sign of the correlation of the measurement outcomes obtained by two distant recipients. The two recipients must cooperate if they are to obtain the sign of the correlation, which is used as a secret key. We show that our scheme is secure against intercept-and-resend (I-R) and beam splitting attacks by an outside eavesdropper thanks to the non-orthogonality of high-dimensional time-bin entangled states. We also show that a cheating attempt based on an I-R attack by one of the recipients can be detected by changing the dimension of the time bin entanglement randomly and inserting two "vacant" slots between the packets. Then, cheating attempts can be detected by monitoring the count rate in the vacant slots. The proposed scheme has better experimental feasibility than previously proposed entanglement-based QSS schemes.Comment: To appear in Phys. Rev.

    Tunnel magnetoresistance and interfacial electronic state

    Full text link
    We study the relation between tunnel magnetoresistance (TMR) and interfacial electronic states modified by magnetic impurities introduced at the interface of the ferromagnetic tunnel junctions, by making use of the periodic Anderson model and the linear response theory. It is indicated that the TMR ratio is strongly reduced depending on the position of the dd-levels of impurities, based on reduction in the spin-dependent ss-electron tunneling in the majority spin state. The results are compared with experimental results for Cr-dusted ferromagnetic tunnel junctions, and also with results for metallic multilayers for which similar reduction in giant magnetoresistance has been reported.Comment: 5 pages, 4 figures, 2 column revtex4 format, ICMFS 2002 (Kyoto

    Fermi Surface of 3d^1 Perovskite CaVO3 Near the Mott Transition

    Full text link
    We present a detailed de Haas van Alphen effect study of the perovskite CaVO3, offering an unprecedented test of electronic structure calculations in a 3d transition metal oxide. Our experimental and calculated Fermi surfaces are in good agreement -- but only if we ignore large orthorhombic distortions of the cubic perovskite structure. Subtle discrepancies may shed light on an apparent conflict between the low energy properties of CaVO3, which are those of a simple metal, and high energy probes which reveal strong correlations that place CaVO3 on the verge of a metal-insulator transition.Comment: 4 pages, 4 figures (REVTeX
    corecore